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Abstract

In this contribution, we discuss a robust estimator based on image reconstruction technique for
image filtering and simplification purposes. Instead of using the least-squares estimators that the
measurement error is independently random and distributed as a normal distribution, a Lorentzian
distribution based estimator is employed to fit a model function to the input image within the local
windows. The estimator weights the outliers of the measurement inversely with respect to the their
deviations unlike the least-squares that magnifies exponentially. We adapted the robust estimator
to simplify image by treating image noise and texture as measurement deviations. The results
prove that the simplification filters have potential of becoming popular image processing tools.

1 Introduction

Reconstruction of the input data set is in demand recently for estimation problems and data simplifica-
tion. By leveraging the regularization aspect, the reconstruction works as an independent smoothness
constraint in disparity estimation, surface model fitting [1], and optical flow based motion estimation
algorithms [2]. Here, we present image reconstruction as an image simplification tool that has several
applications ranged from image editing, animation, manipulation, low bitrate object-based compres-
sion to segmentation [3]. The modeling of spatial discontinuities [4] for problems such as surface
recovery has been intensely studied in computer vision.

The purpose of reconstruction is to remove the texture and noise contaminated in the image such
that the edges that generally correspond to the object boundaries are preserved, and the texture within
the boundaries are suppressed. It is a smoothing operation that does not smooth the edges. Such a
pyramid of simplified images as in Fig. 1 can be employed in a scalable coding technique that adapts
content with respect to network constraints. We model the input image in terms of piece-wise linear
functions in an iterative framework to obtain simplified image.

In the next section, we explain the robust estimators and their difference from the least-squares
based methods. The following section summarizes the image simplification. The test results are
included in the conclusions.

2 Image Reconstruction by Robust Estimators

The term robust is, in general, referring to a statistical estimator, it means “insensitive to small depar-
tures from the idealized assumptions for which the estimator is optimized.” The word small can have
two different interpretations, both important: either fractionally small departures for all data points, or
else fractionally large departures for a small number of data points. Out of various sorts of robust sta-
tistical estimators, we prefer to employ M-estimates that follow from maximum-likelihood arguments.
M-estimates are usually the most relevant class for model-fitting, that is, estimation of parameters [5].



Figure 1: Reconstruction generates filtered and residual images.

Given a set of observations, one often wants to condense and summarize the data by fitting it
to a model that depends on adjustable parameters. Suppose that we are fitting N data points (xi; yi)
i = 1:::N , to a model that hasM adjustable parameters aj j = 1:::M . The model predicts a functional
relationship between the measured independent and dependent variables,

y(x) = y(x; a1:::aM ) (1)

where the dependence on the parameters is indicated explicitly on the right-hand side. The first thing
that minimize to get fitted value is the familiar least-squares fit,

min
a1 ::: aM

NX
i=1
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Suppose that each data point yi has a measurement error that is independently random and dis-
tributed as a normal (Gaussian) distribution around the “true” model y(x). And suppose that the
standard deviations � of these normal distributions are the same for all points. Then the probability of
the data set is the product of the probabilities of each point,
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Maximizing above equation is equivalent to maximizing its logarithm, or minimizing the negative of
its logarithm,
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If we take the derivative of the above equation with respect to the parameters ak, we obtain equations
that must hold at the minimum,
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What we see is that least-squares fitting is a maximum likelihood estimation of the fitted pa-
rameters if the measurement errors are independent and normally distributed with constant standard
deviation.



Suppose we know that our measurement errors are not normally distributed. Then, in deriving
a maximum-likelihood formula for the estimated parameters a in a model y(x;a), we would write
instead of above equation
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where the function � is the negative logarithm of the probability density. Taking the logarithm of (6)
as above, we find that we want to minimize the expression
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If we now define the derivative of �(z) to be a function  (z),

 (z) �
d�(z)

dz
(8)

then the generalization of the case of a general M-estimate is
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If we compare (5) to (9), we see at once that the specialization for normally distributed errors is
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2
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The tails of the Gaussian distribution are exponentially decreasing. A distribution with even more
extensive therefore sometimes even more realistic tails is the Cauchy or Lorentzian distribution,
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Notice that the  (z) function occurs as a weighting function in the generalized normal equations (9).
For normally distributed errors, Gaussian distribution says that the more deviant the points, the greater
the weight. By contrast, when the tails are even larger as in Lorentzian, the function  (z) increases
with deviation, then starts decreasing, so that very deviant points the true outliers are not counted at
all in the estimation of the parameters.

Figure 2: Robust estimator disregards outlier points to find the optimum fit.



3 Image Simplification

Image simplification is a problem of fitting a piece-wise smooth brightness model u to image data
I(x; y). The assumption of piece-wise smooth brightness is frequently violated in natural images.
In textured regions and at intensity boundaries, where the brightness is not uniform, the use of a
robust data term allows us to detect and reject the measurements that violate the uniform brightness
assumption. Given an image brightness function I(x; y), we want to recover a piece-wise smooth
surface u that minimizes

J(u; I) =
X

(x;y)2I

[�(u(x; y) � I(x; y); �D) + �
X

(i;j)2Wxy

�(u(x; y) � u(i; j); �S)] (13)

where Wxy is the window around the point (x; y), and � is the Lorentzian. We build simplification
filter by using downhill simplex minimization. For every point, a first order function is fit in a local
window W . The standard deviations �D and �S are assumed to be constant for all points. An iterative
continuation method is used in which the previously simplified image models u’s are used as the
observation I of the next iteration. For color imagery, each color band simplified separately. The
local window size is adapted to the total iteration number of the algorithm such that for large iteration
numbers a small window is chosen. Big iteration numbers and large windows cause more simplified
image, e.g., significant amount of reduction in the texture.

4 Conclusions

To compare the simplification results with the other smoothing and noise removal filters, median, low-
pass, morphological filters are simulated. A 3� 3 median filter that requires 30 comparison per pixels
is applied to the test images as shown in Figures 3,4,5-(a). As the low-pass filter, a 2D Gaussian kernel
which is computationally similar to the median filter within the 5� 5 window is used. Morphological
smoothing filter is the concatenated open and closing operators with a 3� 3 basic element. However,
morphology requires 165 comparisons. Figures 3,4,5-(b) are the median filtered images, and 3,4,5-(c)
are the Gaussian filtered results respectively. The morphological filtering results are Figures 3,4,5-(d).
The simplified piece-wise constant brightness models that removed a significant amount of the texture
contained in the original images are shown in Figures 3,4,5-(e-f). The complexity of the simplification
filter is measured in terms of the processing time, and it is observed to be less than the morphological
smoothing and similarly performing median filter. A bigger iteration number and a smaller local
window size are chosen for the results given in (f)’s in comparison to results in (e)’s. As visible from
the results, the robust estimator based simplification filter removes the local texture effectively. It does
not smear the edges as the low-pass filter or removes the boundaries as the morphology. Furthermore,
it is faster than the median filter.
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Figure 3: (a) The original image, (b) median filtered, (c) Gaussian filtered, and (d) morphological
smoothed results. (e) The simplified input image within the 5 � 5 local windows, and (f) simplified
within the 3� 3 windows iteratively.
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Figure 4: (a) The original image, (b) median filtered, (c) Gaussian filtered, and (d) morphological
smoothed results. (e) The simplified input image within the 5 � 5 local windows, and (f) simplified
within the 3� 3 windows iteratively.
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Figure 5: (a) The original image, (b) median filtered, (c) Gaussian filtered, and (d) morphological
smoothed results. (e) The simplified input image within the 5 � 5 local windows, and (f) simplified
within the 3� 3 windows iteratively.
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